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Abstract

Augmented reality (AR) takes natural user input
(NUI), such as gestures, voice, and eye gaze, and
produces digital visual overlays on top of reality seen
by a user. Today, multiple shipping AR applications
exist, most notably titles for the Microsoft Kinect
and smartphone applications such as Layar, Wik-
itude, and Junaio. Despite this activity, little at-
tention has been paid to operating system support
for AR applications. Instead, each AR application
today does its own sensing and rendering, with the
help of user-level libraries like OpenCV or the Mi-
crosoft Kinect SDK.

In this paper, we explore how operating systems
should evolve to support AR applications. Because
AR applications work with fundamentally new in-
puts and outputs, an OS that supports AR applica-
tions needs to re-think the input and display ab-
stractions exposed to applications. Unlike mouse
and keyboard, which form explicit, separate chan-
nels for user input, NUI requires continuous sens-
ing of the real-world environment, which often has
sensitive data mixed with user input. Hence, the
OS input abstractions must ensure that user pri-
vacy is not violated, and the OS must provide a
fine-grained permission system for access to recog-
nized objects like a user’s face and skeleton. In addi-
tion, because visual outputs of AR applications mix
real-world and virtual objects, the synthetic window
abstraction in traditional GUIs is no longer viable,
and OSes must rethink the display abstractions and
their management. We discuss research directions
for solving these and other issues and building an OS
that let multiple applications share one (augmented)
reality.

1 Introduction

The last few years have seen the arrival of consumer
augmented reality (AR) applications. An AR appli-
cation takes natural user interactions (such as ges-
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tures, voice, and eye gaze) as input and overlays digi-
tal content on top of the real world. For example, on
mobile phones, augmented reality “browsers” such
as Layar and Junaio allow users to look through the
phone and see annotations about a magazine arti-
cle or a storefront. Furniture applications on the
iPad allow users to preview what a couch would
look like in the context of a real room before buy-
ing [13]. The Kinect has sold over 19 million units
and allows application developers to overlay avatars
on top of a user’s pose, creating new kinds of games
and natural user interfaces. Even heads-up displays,
previously restricted to academic and limited mili-
tary /industrial use, look set to reach consumers with
Google’s announcement of Google Glass [21]. The
area has also received sustained academic attention,
which we discuss in Section 4.

Today’s operating systems provide no special sup-
port for AR applications. As a result, today’s AR
applications are built as one-off experiences, where
the application itself performs sensing, rendering,
and user input interpretation (e.g., for gestures),
aided by user-space libraries such as the Kinect SDK
or OpenCV. Today, these applications can only run
one at a time, and they receive unrestricted, exclu-
sive, access to read the input sensors and render aug-
mentations. However, this approach faces two major
challenges, user privacy and lack of support for con-
current applications, which we discuss next.

First, it is undesirable to give any application
complete access to video and other sensor streams.
Consider Figure 1, which shows a video frame cap-
tured from a Kinect using the Kinect for Windows
SDK. In the current model, any application using
the SDK has access to the raw video and depth
stream. In this case, that includes the user’s face,
the contents of the whiteboard, and a bottle of
medicine.

Therefore, we must rethink how the OS interprets
and delivers user input to applications while pre-
serving user privacy. The OS needs a finer-grained



Figure 1: Video frame captured from a Kinect in the
office of one author. The picture contains multiple
pieces of sensitive information: the face of the au-
thor, drawings on the whiteboard, and a bottle of
medicine with the label showing.

and more usable permission system to allow least-
privilege permission granting in the AR environ-
ment. For example, rather than simply granting an
application access to the camera, as is done on to-
day’s smartphone systems, the OS needs to control
access to the user’s face, skeleton, eye gaze, wall, etc.

Second, rather than continue running AR applica-
tions one at a time, we argue that it is desirable and
compelling to let multiple AR applications from dif-
ferent vendors simultaneously read sensor inputs and
render virtual overlays in a shared 3D reality. Evi-
dence is mounting that such an multi-application AR
platform can be highly desirable. For example, mo-
bile phone “AR browsers”, such as Layar, have cre-
ated APIs for third parties to write applications on
top of Layar. Currently, Layar sports over five thou-
sand applications in its “Layar Catalogue”[16], each
of which adds different annotations to the world.

We argue that the necessary support for such apps
should be integrated into the OS. Rather than un-
necessarily duplicating heavyweight image process-
ing logic such as face or skeleton detection in each
AR application, such logic would be shifted into a
new, centralized OS module, simplifying AR appli-
cation development and letting the OS efficiently
manage performance and battery life.

When we argue for integration into the operat-
ing system, we do not mean that functionality must
necessarily be placed in the OS kernel. Instead, we
mean that shared, trusted functionality that is iso-
lated from each untrusted application should be pro-
vided. We have a prototype “AR OS” implementa-
tion, for example, where shared object recognition
functionality is placed in a single userspace Windows

8 process and multiplexed over local sockets.

We recognize that new abstractions need justifica-
tion given Engler and Kaashoek’s jeremiad against
“one size fits all” OS abstractions[9]. The key dif-
ference we see is that our abstractions encapsulate
security and privacy between AR applications and so
cannot be provided by untrusted applications. For
example, we cannot give applications low-level ac-
cess to camera hardware to do their own gesture
recognition and at the same time hope to prevent
those applications from learning sensitive data from
raw video. There may be techniques to cut this Gor-
dian knot, such as the use of restricted, functionally
pure languages to implement an OS extension [15].

Overall, AR applications require new mechanisms
and abstractions from the operating system: (1)
multiplexing sensor inputs and recognized input ges-
tures across multiple applications, (2) protecting
those inputs with a fine-grained access control pol-
icy enforced centrally by the OS, and (3) providing
presentation abstractions for applications to render
realistic augmentations in a shared reality. Such
support will face new challenges not seen in tra-
ditional OSes, such as noisy user input interpre-
tation, fine-grained permission granting, managing
non-rectangular, realistic 3D objects from mutually
distructing applications, and physics-enabled cross-
application interactions.

2 AR Overview

What is an AR Application? For the purposes
of this paper, an augmented reality application (1)
recognizes the presence of objects or events in the
world by applying machine learning to raw sensor
data, such as gestures by a person or a landmark.
Then the application (2) outputs a set of “virtual
objects”, optionally attaching them to recognized
real-world objects, and renders them in real time.
For example, the Facebook “live poster” application
in Section 1 recognizes the presence of a wall, then
outputs a virtual “poster” with Facebook status up-
dates that is rendered to look like it is on the wall.
Form Factors. We expect AR systems to have
three major form factors, two of which are shipping
today to consumers. First, phone AR consists of a
phone or tablet acting as a “magic window” on an
augmented world, such as Layar. Second, room AR
consists of a fixed set of cameras in a room feeding
into a large display, such as the Microsoft Kinect. Fi-
nally, wearable AR refers to augmentation through
glasses, body worn camera, or other always-on worn
device, such as Google Glass. While other form fac-
tors, such as AR clothes kiosks or AR billboards,
will exist, these three form factors are the starting



Application Objects Recognized

Kinect Applications
Your Shape 2012
Dance Central 3

skeleton, person texture
skeleton, person texture

Nike+Kinect skeleton, person texture
Just Dance 4 skeleton, video clip
NBA 2K13 voice commands
Dashboard pointer, voice commands

Forward-looking Applications
Personal Assistant face, full audio text
FB Live Tile wall positions
Furniture room positions
Translation Text OCR

Figure 2: Analysis of sample applications to deter-
mine how often “raw” sensor access is needed.

points for multi-application user platforms.

These form factors have different input and out-
put characteristics that affect the privacy issues for
each. With room AR, the camera faces the user.
This raises privacy issues for the user, because in
room AR the user is continuously observed. Vi-
sual feedback is limited to a single screen. Inputs
are noisy, consisting primarily of voice and gestures.
The sensors, however, are limited to a single room
and do not travel.

With wearable AR, cameras typically face out-
ward, away from the user. These devices are mobile,
so video feeds implicitly leak location information
and identities of people around the user. While the
user may be able to selectively point a camera by
turning his or her head, this is not common. Input
comes through gestures and voice, which also have
noise. Output may be immersive, depending on the
type of visual and audio features used.

In contrast, phone AR falls in between. The phone
may have two cameras. When using the camera fac-
ing out, it sees other people and so has privacy is-
sues similar to wearable AR. When using the camera
facing in, it has privacy issues similar to room AR.
Compared to the other form factors, the phone is
explicitly controlled by the user, with a default of
not showing video to any applications.

3 Sharing One Reality

We start with aspects of AR that make it different
from desktop or mobile phone application models.
For each we discuss similarities and differences with
other systems, such as proposed ubiquitous comput-
ing systems.

From 2D Rectangles to 3D Meshes. Desktop
and mobile phone systems typically display applica-

tion content through rectangular windows. These
windows are arranged by the OS and are static.
In contrast, AR applications create objects defined
by three-dimensional triangular meshes and position
them in a 3D space. Therefore, the OS needs to
expose 3D objects as the display abstraction and
perform display isolation and management in the
3D space. One particularly interesting aspect is
that real-world 3D space is difficult to virtualize.
If a region is occupied by one application’s object,
then another application cannot show its object in
the same view at the same time. Overcoming this
problem may require creating new visual metaphors
for objects, enforcing behavior consistent with these
metaphors in the OS, and educating users what these
metaphors are. This aspect is specific to AR.
Mixed Real and Virtual Objects. Traditional
desktop and mobile phone applications do not typ-
ically need to position windows with regard to ob-
jects in the real world. In contrast, AR applications
create virtual objects and must update their posi-
tion as the user’s view of the real world changes.
This imposes real time requirements beyond what
is currently found in today’s GUI sysems. The AR
objects, to look realistic, may obey physics and as a
result will move on their own or as a result of inter-
acting with other objects. The OS needs to handle
the physics between objects of different applications
(such as a ball of one application bouncing into a ball
of another application), which can be considered a
new kind of cross-application interaction. The OS
also needs to deliver a richer set of events like “col-
lision” events in addition to traditional events like
user input or network data arrival events.
Continuous, Noisy Input. The AR systems we
consider do not have a mouse or keyboard. Instead,
inputs are continuous, driven by gestures, objects
in the environment, and speech from the user. In
addition to being continuous, these inputs are noisy:
the algorithms for mapping raw sensor data to a
user input have false positives and false negatives.
For example, the Kinect may recognize a chair as
a skeleton and hence return junk skeleton positions
to an application. This is unlike desktop systems,
where keyboard and mouse are relatively reliable.
Mobile phones are somewhere in between, as touch
keyboards already face this issue of correcting for
user mis-types. This aspect applies to any system
using “natural user input,” but again AR systems
will be a prominent class of such systems.

3.1 Research Problems and Directions.

Continuous input in tension with privacy. The
continuous input nature of AR systems means that



applications need access to video, audio, and other
sensors for control. The key problem is that, as we
saw in Figure 1, these sensors can include sensitive
private data, including the face of the user, the con-
tents of the whiteboard, and a bottle of medicine.
Unfortunately, we cannot turn off these sensors en-
tirely, because otherwise we cannot control the ap-
plication!

The research problem here is how the OS should
manage natural user input is presented to applica-
tions and input is in band with other sensed data.
For example, the OS might create abstractions that
expose only the data required to applications. This
would include a standard vocabulary of gestures
(such as “swipe”, “wave”, or “grab”) and other input
abstractions. As a first step toward estimating the
feasibility of such a standard vocabulary across mul-
tiple applications, we analyze the top 5 best-selling
Kinect-enabled XBox applications, along with the
XBox Dashboard. For each application, we enumer-
ate the objects they recognize. Figure 2 shows the
results. Surprisingly, the only application that uses
the raw video feed is a dancing game, Just Dance 4.
This game allows users to optionally take short video
clips of themselves dancing and send these videos to
others. The other applications instead simply render
an avatar on top of the user’s skeleton position. One
application, NBA2K13, uses only voice commands
and no video data at all.

We continue with four“forward-looking” applica-
tions. The Personal Assistant recognizes faces and
keywords in conversations, then lets the user know
the name of a person and what to say. The Face-
book Live Tile, as we discussed in Section 1, renders
Facebook status updates as a virtual “poster” on
the wall of a room. The Furniture application places
virtual furniture into spaces of a real room. Finally,
the translation application uses OCR and then adds
“subtitles,” as in the shipping Bing Translator ap-
plication on phones. Again, none need the full video
stream. The personal assistant optionally uses the
full audio stream to assist in person recognition.

These preliminary results indicate that an OS
which prohibits continuous access to “raw” video
and audio, yet exposes higher-level gestures, could
suppport today’s AR applications. Another tool in
our toolbox might be access control gadgets, (ACGs)
which are special system UI elements that mediate
access to privileged resources [23]. One challenge
here is that AR applications have long term, con-
tinuous access to sensitive resources such as video
data. A second challenge is that AR applications
will need fine-grained permissions, such as access to
faces in a video stream, while ACGs are defined for

coarse-grained resources such as access to the cam-
era. That said, the “send a short video clip” behav-
ior seen in Just Dance 4 might be implemented with
a system-controlled ACG. The application would ask
the system to pop up a dialogue and the application
would supply a destination for the video, but the ap-
plication would never see the raw video. More work
remains to see if this approach would work for addi-
tional AR applications, as well as working through
the impact on OS permissions, but this initial anal-
ysis suggests that “least privilege for AR” at the OS
level is possible.

Performance and battery life. Because AR ap-
plications render on top of a user’s senses, the plat-
form has strong real-time requirements to avoid dis-
tracting lag between the real world and virtual ob-
jects, possibly as low as 7 ms drawing latency [1].
Continuous object recognition is also processor in-
tensive. We found that one algorithm for comput-
ing room geometry from Kinect depth data could
not run at acceptable frame rates on anything less
than an Nvidia GeForce 650GTX, which has a giga-
byte of RAM and 384 cores. The research question is
how to intelligently mix local and remote computa-
tion while minimizing bandwidth usage and preserv-
ing user privacy. While offloading is a classic prob-
lem, the latency requirements and object recognition
needed in AR make it particularly challenging.
Input ambiguity. The OS must deal with the in-
herent noisiness of machine learning for recognizing
gestures, speech, and other input. While of course
we hope these recognizers will be perfect, today ob-
ject recognition algorithms generally have false pos-
itives and false negatives. In addition, because new
object recognition algorithms arrive all the time, the
OS must also tackle how third paty applications
could extend the platform with additional object
recognizers. There are two key research challenges
here. First, how can an OS deal with inherently
probabilistic input? Second, how can we “sandbox”
third party object recognizers so they do not inter-
fere with each other or leak sensitive information
against the wishes of the user?

A key scenario here is analogous
to“clickjacking”” [12]:  the wuser interacts with
the system, but unwittingly ends up communicating
with the “wrong” application. Because input
is continuous and noisy, this can happen even
by accidennt. For example, if two applications
register to be notified on two words that sound
similar, the system may become confused about
which application to notify. Therefore a research
challenge for this example is designing an OS that
protects the user against malicious applications



that intentionally register for confusing words so as
to gain improper access to user information.
Application Space Management. As applica-
tions move from windows to three-dimensional ob-
jects, the OS must manage how they present to the
user. The most natural approach is for the OS to
centralize presentation across all applications. Be-
cause AR applications create 3D objects, this would
incorporate a physics and graphics engine like Unity.
A central trusted renderer enables the OS to make
guarantees about performance, distraction, and app
interference. Applications, however, may want to ex-
tend presentation with new ways of rendering. Ad-
dressing this tension may require the OS to open
up new channels from applications to the GPU that
can strongly isolate rendering in different parts of a
display.

Distraction. Depending on the output device,
there may be patterns that will distract the user
or even cause discomfort. For example, flickering
at certain frequencies will trigger seizures in epilep-
tics, and in fact a specially targeted animated GIF
has been used to attack epileptic users of a web fo-
rum [18]. More prosaically, an application could de-
tect an oncoming car, then put up a virtual object
that shields the car from he user’s view. A system
with a central trusted presentation stage has an ideal
choke point for addressing this issue, because then
the system can prioritize the user’s attention based
on application priority. The research challenge here
is first discovering these patterns, then determining
ways to avoid them without sacrificing expressivity
or speed.

Object Model. Another challenge is how the OS
should mediate between applications that are “em-
bodied” in virtual objects. This aspect has similar-
ities to work on virtual reality, where applications
are similarly embodied. We expect problems seen in
VR environments, such as the self-replicating “grey
goo” objects in Second Life [14] to also appear in
AR. As aresult, AR systems will need to implement
mechanisms from VR, such as object creation rate
limiting [17]. What complicates AR is that, unlike
VR, virtual objects must “interact” with real ob-
jects that cannot be controlled or inspected by the
system.

Application Semantics. Finally, there may be
benefits from a restricted programming model that
makes it easier for the system to reason about appli-
cation behavior. We have made an initial foray here
with a functional language focused on simple anno-
tation of recognized objects. Because the language is
not Turing-complete, it supports precise static anal-
yses, including an analysis that detects potential an-

notation conflicts between applications [6].

4 Related Work

Azuna surveyed augmented reality, defining it as
real-time registration of 3-D overlays on the real
world [3], later broadened to include audio and other
senses [4]. We take a broader view and also consider
systems that take input from the world. Qualcomm
now has an SDK for augmented reality that includes
features such as marker-based tracking for mobile
phones [22].

Shipping object recognizers include the Kinect
skeleton detection algorithm [24]. Another common
recognizer is face detection [25]. More recently, Poh
et al. showed that heart rate can be extracted from
RGB video [20].

Our notion of taking raw sensor data and pro-
viding a higher level abstraction is similar to Con-
dOS [5]. We differ in that we focus on recognition of
real-world objects. Using static analysis to guaran-
tee non-interference is similar to Singularity’s use of
managed code to run multiple programs in the same
address space [2]. We noted that mobile systems
may need to offload object recognition to the cloud
or to specialized hardware, which raises heterogene-
ity issues similar to those tackled by the Helios satel-
lite kernel architecture [19]. The issues in allowing
individual applications to extend a trusted renderer
are similar to those faced by GPU virtualization [7].

A common approach to privacy for sensed data
is to add noise to the data. Differential privacy
is a definition of privacy that, if met, gives strong
guarantees against an adversary learning about any
specific individual [8]. Unfortunately, in our case,
adding noise to the raw data would likely lead to
errors in recognized inputs. A permission based ap-
proach is more promising, and recent work focuses
on the psychology of asking for permissions in An-
droid and other systems [10, 11]. In our setting,
however, this work does not directly apply because
AR is immersive and has fine-grained permissions
such as access to all faces in a video stream but not
other objects. More work is needed to explore a per-
mission experience for AR applications.

5 Conclusion

We have introduced multi-application augmented re-
ality as an emerging issue for systems. These sys-
tems raise new issues that prompt new directions
in OS research. The time is right for the systems
community to consider multi-application augmented
reality.
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